实现机器人操作系统——ADI Trinamic电机控制器ROS1驱动程序简介
:机器人操作系统(ROS)驱动程序基于ADI产品而开发,因此可直接在ROS生态系统中使用这一些产品。本文将概述如何在应用、产品和系统(例如,自主导航、安全气泡地图和数据收集机器人)中使用和集成这些驱动程序;以及这样将如何有助于迅速评估新技术,并防止与第三方产品的互操作性问题。在本文探讨的全部的产品中,将着重关注最近发布的用于ADI Trinamic™电机控制器的ROS驱动程序,该驱动程序是用于嵌入式运动控制的完整板级模块,融合ADI Trinamic运动控制专业相关知识,以及ADI的模拟工艺技术和电源设计技能。
ROS是机器人中间件,包含一组软件库和强大的开发工具(从驱动程序到先进算法),可作为机器人系统或应用的开发基础。ROS涉及多领域(例如,消费电子、工业、汽车等),支持多个平台(Linux、Windows、MacOS和一些嵌入式平台),而且100%开源,并提供商业选项。得益于来自全球技术社区的专用资源,ROS可获得丰富的支持,从而帮助用户简化其设计和应用。
ROS始于2007年,已成为无人驾驶汽车、工业机器人、飞行器等领域备受欢迎的机器人开发原型制作平台。经过持续不断的发展,该技术现在有两个版本:ROS1和ROS2。
ROS1和ROS2系统必须相互隔离,但通过ROS桥,这两个系统之间可进行通信和交换数据。
ROS Noetic是ROS1的最终版本,将于2025年5月终止支持,而ROS2自2020年6月推出以来,不断滚动更新发行版。
ROS功能包是ROS程序或节点的主要组织系统。这是ROS中最核心的构建/发布项。创建ROS功能包时,请务必设置专用的ROS工作空间。该工作空间被称为catkin工作空间,其中catkin是ROS的官方构建系统。
ROS节点是在ROS中创建的可执行程序。它们是执行特定任务的进程。ROS节点可使用ROS客户端库(如Python客户端库rospy和C++客户端库roscpp)相互通信。节点可以订阅和/或发布主题,也能够给大家提供或使用服务。3
主题是数据通道,而消息是数据,采用与ROS兼容、适用于不同传感器的格式。
ROS主题通过发送消息(主题发布者)或接收消息(主题订阅者)进行通信,并且一定要采用匹配的数据类型。
发布者-订阅者通信模式是开放式模式,不适用于分布式系统中常常要的回复交互。4
服务支持节点通过发送请求和接收响应进行通信。发布者-订阅者通信模式使用.srv文件,在这些文件中,指定了请求和响应的消息类型等服务描述。
服务是双向同步通信模式,其中包含客户端与服务器。服务器节点提供服务,而客户端节点发送请求并等待服务器节点做出响应。
例如,在图3中,server_node提供服务SetVelocity.srv以更改命令速度vel。该服务接受float32格式的速度值,并以字符串格式返回状态;如果设置了请求的速度,则为“success”;否则,为“FAIL”。
ADI是ROS-Industrial联盟的正式成员,ROS-Industrial是一个开源项目,旨在将ROS软件的高级功能扩展到与工业相关的硬件与应用。5作为该技术社区的一份子,ADI最初的目标是面向工业领域开发专用模块。
ADI针对不一样的专用模块开发了ROS驱动程序。为了展示所开发的驱动程序并利用ROS的功能,ADI公司开发了ADI自主移动机器人(ADAM)作为内部自主移动平台(参见图4)。
ADAM由ROS提供支持,并搭载ROS支持的不同器件。该平台展示了ADI公司的ROS驱动程序如何集成到移动机器人应用中,特别是自主导航应用。
图5所示为具有不一样模块的ADAM的简化硬件图。该ADAM主要连接以下器件:
■ ADIS16470或IMU传感器采用精密陀螺仪、加速度计、磁力计和压力传感器的多轴组合,这一些器件主要用作检测反馈,用于改善位置/方向估算。
■ ADBMS6948是一款多单元电池监控器,可测量多达16个串联连接的电芯,在整个温度范围内具有较高的测量精度。
■ EVAL-ADTF3175D-NXZ或CMOS ToF提供出色的高分辨率,与深度计算和处理、激光驱动器、电源管理以及具有参考固件/软件的开发工具相辅相成,可带来更多优势。
■ ADI是用于嵌入式运动控制的完整板级解决方案,融合ADITrinamic运动控制专业相关知识,以及ADI的模拟工艺技术和电源设计技能。1
图6所示为ADAM的简化ROS架构,该ADAM使用ROS驱动程序和自主导航所需的多个应用/算法节点。IMU数据(/imu/data_raw)和ADI反馈(/tmc_info)用作姿态估算的输入,从而得到机器人的里程测量结果(/odom)。激光雷达数据(/scan)是用于生成地图的同步定位与地图绘制(SLAM)算法的主要输入;ToF数据(/image_raw)还可用作其他SLAM算法的输入。然后,move_base节点将等待用户发出任何目标姿态,并向ADI Trinamic电机控制器发送速度命令(/cmd_vel),使机器人移动。
名为TMCL-IDE的IDE可帮助用户开发应用并对这些模块轻松重新编程。该IDE使用TMCL实现独立操作,或使用标准化CANopen®协议,允许用户设置参数、实时对数据来进行可视化处理,并开发/调试独立应用。
由于TMC使新型智能执行器成为可能,并且随着ROS日益普及,尤其是在机器人领域,我们针对这些模块开发了额外支持,如ROS驱动程序,从而进一步扩展制造业和工业自动化的用例。具体来说,预计这些ROS驱动程序将能够:
TMC ROS驱动程序与TMCL-IDE提供的功能相似,但它能够让支持ROS的系统节点轻松使用这一些TMC,无需安装任何其他驱动程序。截至本文发表之时,该驱动程序仅支持CAN接口(特别是SocketCAN),其他接口正在开发中,很快也将提供支持。
如图7所示,由于adi_tmcl使用大多数Linux系统默认支持的SocketCAN驱动程序,所以不需要任何额外的驱动程序。此外,adi_tmcl具有自己的TMCL协议解析器,因而能够理解用户请求的符合TMCL的发送/接收命令。作为最后一层,tmcl_ros_node以发布者、订阅者和服务的形式在ROS系统上提供直接接口。每种形式均提供特定的功能,这些功能可使用以下部分详细的介绍的一组参数进行配置。
敬请关注下月《模拟对话》中的文章“掌控搭载ROS1驱动程序的Trinamic电机控制器”,文中将详细探讨这些特性,并举例说明怎么样去使用这些特性。
利用ADI Trinamic电机控制器可实现新型智能执行器。随着ROS日益普及,尤其是在机器人领域,我们针对这些模块开发了额外支持,如ROS驱动程序,旨在进一步扩展制造业和工业自动化用例。
■ 敬请关注有关ADI Trinamic电机控制器ROS1驱动程序的文章,进一步探索相关信息
■ 敬请关注未来发表的有关用于ADI Trinamic电机控制器的ROS2的文章
Krizelle Paulene Apostol是一名软件系统工程师,她所在的ADI公司菲律宾开发中心与智能运动和机器人部门展开合作。她于2019年12月加入ADI公司,工作地点位于菲律宾甲米地。她毕业于菲律宾信心学院,获计算机工程学士学位。她曾参与众多项目,专注于ROS、Gazebo仿真、固件开发、通信协议和算法开发等领域。
Jamila“Jam”Aria Macagba是一名高级软件系统工程师,她所在的ADI公司菲律宾开发中心与智能运动和机器人部门展开合作。她于2018年7月加入ADI公司,工作地点位于菲律宾甲米地。她毕业于菲律宾大学洛斯巴洛斯分校,获电气工程学士学位。她主要负责ROS系统中的ROS驱动程序开发与集成工作。
Maggie是一名软件系统模块设计工程经理,她所在的ADI公司菲律宾开发中心与工业运动和机器人部门展开合作。她于2019年4月加入ADI公司,工作地点位于菲律宾甲米地。她毕业于菲律宾大学洛斯巴洛斯分校(位于菲律宾拉古纳),获计算机科学学士学位。她目前在菲律宾工厂率领工程师小组,为工业机器人项目提供支持。从2009年至2010年,Maggie在惠普担任应用专家;从2010年至2013年,在Canon Information Technologies Phils., Inc.担任高级软件工程师;从2013年至2015年,在Ionics EMS, Inc.担任固件开发工程师;从2015年至2019年,在新加坡大陆汽车公司担任高级嵌入式软件工程师。